a2 United States Patent

Fridman et al.

US009342479B2

US 9,342,479 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

SYSTEMS AND METHODS OF DATA
EXTRACTION IN A VECTOR PROCESSOR
Inventors: Jose Fridman, Newton, MA (US); Ajay
Anant Ingle, Austin, TX (US); Deepak
Mathew, Acton, MA (US); Marc M.
Hoffman, Mansfield, MA (US); Michael
John Lopez, Walpole, MA (US)
Assignee: QUALCOMM Incorporated, San
Diego, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 893 days.
Appl. No.: 13/592,617
Filed: Aug. 23,2012
Prior Publication Data
US 2014/0059323 Al Feb. 27,2014
Int. CL.
GO6F 9/00 (2006.01)
GO6F 15/80 (2006.01)
GO6F 9/30 (2006.01)
U.S. CL
CPC GO6F 15/8084 (2013.01); GO6F 9/30018
(2013.01); GO6F 9/30032 (2013.01); GO6F
9/30036 (2013.01); GOGF 9/30109 (2013.01)
Field of Classification Search
CPC i GOG6F 9/30018; GOGF 15/8084
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
4,825,361 A 4/1989 Omoda et al.
4,918,600 A 4/1990 Harper, III et al.

5,669,013 A 9/1997 Watanabe et al.

6,820,195 Bl 11/2004 Shepherd

7,430,631 B2 9/2008 Van Berkel et al.

7,610,466 B2 10/2009 Moyer

8,600,401 B2* 12/2013 Kumarcco..... 455/456.1
2002/0031220 Al* 3/2002 Leeetal. . 380/37
2004/0054877 Al 3/2004 Macy et al.
2007/0106883 Al 5/2007 Choquette
2008/0114969 Al 5/2008 Gonion et al.
2009/0172348 Al 7/2009 Cavin

FOREIGN PATENT DOCUMENTS

EP 0068764 A2 1/1983
OTHER PUBLICATIONS

Anjum O., et al., “State of the art baseband DSP platforms for Soft-
ware Defined Radio: A survey”, EURASIP Journal on Wireless Com-
munications and Networking, vol. 2011, No. 1, Jan. 1, 2011, p. 5,
XP055053153, ISSN: 1687-1499, DOI: 10.1049/ip-cdt:20030833.
Freescale Semiconductor Ltd: “AltiVec (TM) Technology Program-
ming Interface Manual”, Jun. 1, 1999, XP055019778.

International Search Report and Written Opinion—PCT/US2012/
052328—ISA/EPO—May 16, 2013.

(Continued)

Primary Examiner — Zachary K Huson
(74) Attorney, Agent, or Firm —Donald D. Min; Paul
Holdaway

(57) ABSTRACT

Systems and methods of data extraction in a vector processor
are disclosed. In a particular embodiment a method of data
extraction in a vector processor includes copying at least one
data element to a source register of a permutation network.
The method includes reordering multiple data elements of the
source register, populating a destination register of the per-
mutation network with the reordered data elements, and
copying the reordered data elements from the destination
register to a memory.

26 Claims, 11 Drawing Sheets

900

~

902

Capy at least one data element from a first register to a
source register of a permutation network

004

Use a bit-mask to determine whether to select one or
more data elements from the source register

/908

In response to determining to select the one or more data
elements, populate a destination register of the
permutation network with the selected data elements

908

Copy the selected data elements from the destination
register to a memory according to an unaligned store
pointer that indicates a predicated store operation

US 9,342,479 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Nilsson A, etal., “An 11 mm, 70 mW Fully Programmable Baseband
Processor for Mobile WiMAX and DVB-T/H in 0.12m CMOS”,
IEEE Journal of Solid-State Circuits, IEEE Service Center,
Piscataway, NJ, USA, vol. 44, No. 1, Jan. 1, 2009, pp. 90-97,

XP011241032, ISSN: 0018-9200, DOI 10.1109/JSSC.2008.
2007167 p. 3, right-hand column, last paragraph.

Tyler J., et al.,, “AltiVec<TM>: bringing vector technology to the
PowerPC<TM> processor family”, Performance, Computing and
Communications Conference, 1999 IEEE Intern Ational Scottsdale,
AZ,USAFeb. 10-12, 1999, Piscataway, NJ, USA, IEEE, US, Feb. 10,
1999, pp. 437-444, XP010323652, ISBN: 978-0-7803-5258-2.

* cited by examiner

US 9,342,479 B2

Sheet 1 of 11

May 17, 2016

U.S. Patent

L "OId4
Sl
» ZIT Aows|y
9| |
R OLT Jaisibay uoneunssq
;|
e e e e e e e —
_. IIIIII | B80T >OMBSN uonenwiad
] |
A A | _
| I
a ! "
NgSphe | _ go1 JeysiBoy [0QuoD
| I
| I
| I
0 L ¢ € v 9 9 L 8 6 0L LLclelvlal 9l LL 8L 6L 02 e 22 €2 ¥2 G¢ 9¢ LZ 8¢ 6¢ 0E lE
elqflolploels|Blult]lIx]lilwluljoldlblals|i|n|alm]|x]|A]z]|ee|lqge|oe|peloe]le
YOT Jo1sibay 90.1n0g

201 Jopsibay isui4

0] J0SS80014 JOJOBA

US 9,342,479 B2

Sheet 2 of 11

May 17, 2016

U.S. Patent

¢ ‘OId
L A A | z |ee|qe|oe|pe|oe| e
Jaiod |- Hi
s Z1 L Aowapy
~y1Z
A8 A | z |ee|qe|oe[pe[ee] e
= » 0T Jesiboy uogeunsag
JauIog
= 301 YHOMION uopeInuIdd
812 :
802 1940 0
o0z Msew-ug | 44400044%0
: 1€
e wlulo|d|bla]s] A | z |ee|qe|oe|pe|oe| je
70T JojsiBay 201nog

00C

€

201 Jorsibay jsii4

US 9,342,479 B2

Sheet 3 of 11

May 17, 2016

U.S. Patent

00¢€

€ Ol

99|49 |6q|uq T I-F
elalofp|e]s|6]ult|r]s]L]A}zteeit]oe|pe mm..ﬁ-_,mm ye| e | e [me|xe|4e|ze|eq|qqlog|pg
e B meeswos Bl B Z1 T Mowsy

J12)uI04
aia15 our ony| |10 BI0IS #
ole-’ ~y1T
°a]4a |bqjud Belue| e [fe [we|xe|Ae|ze|eq|qq|oq(pg
Jo)I0d 0L} Jeisiboy uogeunseq
4 19SHO
812
201 MomjaN uoneinwiad
802 19SH0 08
90¢
ysew-yg| 000 4440%0
. L€
Belye| e | fe [ye| e Jwelue|oe|de|be|.1e |se|1e [ne|re|me|xe|Ae|ze|eq|qq|oq|palaa|ia [Balualia |la |xa]1a
\ 701 Joysibay 901n0g
\.\ 0 L z ¢
201 Jejsibay 3siiq

US 9,342,479 B2

Sheet 4 of 11

May 17, 2016

U.S. Patent

v "OIld
aq|iq |Bgluq :P_E MG Aq|zq|eo|go]oo|po|ao| o
elqlo]|p]le /7@ ylr | Tf>d1 | A]|z]|eelqq|oo|pp|ea| 4 [Be|ye]| e | e |me|xe|Ae|ze|eq|qq|oq|pg
i J21UI04 211 Aowsy
plg- 104 39S 91.¢ 81015 BUI IXeN #
ng|Aq|mglxq|Aglzq|eo|go|oo|po|eo| o
.// 19)uI0d 011 Ja1siboy uogeunssg
19SHO #
\gi2
801 >HOMISN uoneInwIad
80¢ 19shO ol
90¢
SSBW-Ig 0044 4000%0
0 L€
wqluglog|dglbglig|salig |ng|aqgmqlxq|Aq|zq|eo|qgo|oo]|po|e0 Boluyof o | o[y] o [woljuo]oo|dofbofo
70T Ja1sibay 80In0S
\\ 0 I A €
00¥ —
201 Jaisibay isii

US 9,342,479 B2

Sheet 5 of 11

May 17, 2016

U.S. Patent

0 g OId e
v g]o[a|3[d|D|H]IT]|T[A]TIW|IN[O|L|D|Y]|S|L|N|[AIM[X]A]|Z|vV|aV|Ov|aV|3V|dV
011 Je)si69y uoneunsseq

uonoenxg [OqUIAS
10ld Japio-u|
2iS isenyg 01C viseuw-ig 803 sew-ig

0 = sig bulureway
| =2€'62'92°'€2'02' 2L VL L1L'Q'G'Z sHg

0 = siig Bulureway
| =1€92'GZ'2Z'6L9L°CL0L L 'YL sHg

0 = syg bBululeway
| =0€'42'YC' L2'8L'SLZL'6'9'C'0 Sig

0L Z €% SS9 L 8 60

L2l €L 1L SL 91 LI 8L 61 OC LZ ¢C €C vC GC 9¢ L 8C 6 0E L€

vV av oV

av.

v

4V

M X A
90G z Joisibay 80In0g

0L 2 ¢€+v 69 . 8 60

L 2h €1 v1 GL 91 LI 8L 6L OC L ¢¢ € ¥Z GC 9¢ /¢

8¢ 6¢ 0¢ e

1 N N 0

d () Y

S

L

N

A\

70C | Jaisiboy oa1nog

Il ¢ ¢ v @ 9 L 8 6 0l

L2 €1 v1 GL 91 LI 81 61 OC I ¢¢ € vC GC 9¢ /¢

8¢ 6¢ 0¢ 1E

S| 4)

H

r

A

0
Z0G 0 Je1s168y 801nosg

M

00G

US 9,342,479 B2

Sheet 6 of 11

May 17, 2016

U.S. Patent

9 'Oid
0O L 2 ¢ ¥ 6 9 L 8 6 0L LL 2l €L vk SlL 9l LlL 8L 6L 0¢ L& ¢¢ € v¢ G 9¢ LZ 8¢ 6¢C 0F 1€
vIglolal3|d(D|H|T]|C[A]TIW|INIO[d]|O[H|S|L|N|A|M|X]|A]|Z]|VYV|aV|OV|AV|IV|IV
01T JaisiBay uoneunse A A
A |

9 L 8 6 OL LLch€ ¥ G 9k ZL 8L 6L 0Z 12\2Z €2 v Sz 9¢!ie 8z 62 0f 1€
d(S|(L1[N]|A

(0 L 2 ¢ ¥
vi|g|olals

809 Lm_%_@om aleIpauLsu|

0

A

_ A

9 /L 8 6 0l :Nrmrimro?tw:&omFN@NmmqmmN@NNwNaNom:oy

_

“

_

(9]

=
x
>
N

vv|av|[ov|av|3av|dV

09 J8)s169y a1eipauLIBu|

A
¢l €1 ¥1 GL 91 ZI 8L 61 O¢ PNJNN €C ¥¢ G¢ 9¢ LZ 8¢ 6¢ 0P ¢

d(S|[L[N]|A

<)

709 Je)sibay sjeipsuusiu|

9 L 8 @oU:‘Nrmvva@vtwvmromKNN@N#N@N@NNN@N@NO@E

g
“_
A
_
|
y
_
“
!
!
0Lz e v § 928 60
!
_
A
S
“_

Z09 Je)sibay ajeipausu|

009

US 9,342,479 B2

Sheet 7 of 11

May 17, 2016

U.S. Patent

L OId
0 L ¢ € v 6 9 L 8 6 0L 1LLcl el vl Sl ol Ll 8 6L 0C L ¢ € e GC 9¢ L¢ 8¢ 6¢ 0 LE
vIigo1a|3|dID[HIT|FIA]T|IW|IN[O|Ad|ODO|H|S|L|IN|A[M|IX]A]|Z|VV|EVOV|AV|IV|IV
» » » 011 Jeisibey uoneunssq
1 | 30T HOMIBN uoneInuIag
_
_U "r N € ¥ ¢ 9 L 8 6 0L LLclLel vl Sl 9l Ll 8L 6L 0O Lé e &€ Ve G¢ 9¢ L2 8¢ 62 0F LE
_m @ 6 |cL|SL|SL|Lc|Pc|Lcloel L | v | 2 [0L]|EL|al|6l|cc|Selscliel c |G| 8| PL|LL]|0C|EC|9C|6C
| ——=S——— 307 Jaisibay [04u0D
0 L ¢ € v 8 9 L 8 6 0L 1LLcl el vl Sl ol Ll 8 6L 0C L ¢ € e GC 9¢ L¢ 8¢ 6 0F LE
VITIMIGIN|IX|D[INIAIQ|O|Z|3|d|W|A|0|aV|D|HOVIH|SI|AV] I |L|AVYIr|N[dVIA]|A
A A 707 1915160y o1eipowa)u|
p 1 W € v 6 9 L 8 6 0L L2l gLyl gl 9l Ll 8L 6L 0C LZ ¢ € vC S¢ 9¢ L2 8¢ 6¢ 0F LE
D v\ N olLy1ctiotbtcejojtrjciotibyc|{ofi|ictiolb|ec|ofL|c|olb|c|O]L]|2c]|0O]!
" | _ Z0Z 1915169y [0/u0D
& —“ ¢ € ¥ S 9 L 8 6 0L LLclel ¥l Sl 9l Ll 8L 6L 0C LE cC €C e SC 9¢ LZ 8¢ 62 0E LE
L Em A Y av) OV av v 1y
L 090G z Jais169y 921n0g
d L 2 €€ ¥ S 9 L 8 6 0L 1LLZLeELvLSLOL LLSGL6BLOZ L ZCEZ P2 ST 92 L2 82 62 0 LE
N W N 0 d O Y S NI N A
h 370G | Jojsiboy 901n0S
0L ¢ € v § 9 L 8 6 0L LLcLelvlSl ol Ll 8 6L 0C LE cC € vC SC 9¢ LZ 8C 6¢ 0F LE
d D a =] 4 9) H ! _, A
Z0G 0 Joysibay aoino
oow\-\ 206G 0 J9)SIoay S

U.S. Patent May 17, 2016 Sheet 8 of 11 US 9,342,479 B2

800

/802

Copy at least one data element from a first register of a vector
processor to a source register of a permutation network

/804

Reorder multiple data elements of the source register

[806

Populate a destination register of the permutation network
with the reordered data elements

FIG. 8

U.S. Patent May 17, 2016 Sheet 9 of 11 US 9,342,479 B2

900

4

/902

Copy at least one data element from a first register to a
source register of a permutation network

904

Use a bit-mask to determine whether to select one or
more data elements from the source register

f906

In response to determining to select the one or more data
elements, populate a destination register of the
permutation network with the selected data elements

f908

Copy the selected data elements from the destination
register to a memory according to an unaligned store
pointer that indicates a predicated store operation

FIG. 9

U.S. Patent May 17, 2016 Sheet 10 of 11 US 9,342,479 B2

1000

/1002

Copy at least one data element from two or more first
registers to a register to be used as input of a
permutation network, where copying the at least one
data element is based on a first control register that
indicates, for each location of the register, which of the
two or more first registers is to be used to populate the
location of the register

K’IOO4

Select data elements from the register using a second
control register, where the second control register
indicates indexes of the register corresponding to

locations of the data elements in the register

F’IOO6

Populate a destination register of the permutation
network with the selected data elements

K’IOOS

Copy the selected data elements from the
destination register to a memory

FIG. 10

US 9,342,479 B2

Sheet 11 of 11

May 17, 2016

U.S. Patent

474" _‘Mw”

ANOHJOHOIN

geL L~

dIMVILS

9L~

b oi4 Addns
—_ mm_>_>0a
(spous, HITIOMINOD
3179V e “69) |
HIAIFONVHL SEEREII
051" ovh1~
03009
[sisiBoy
SUONANJSU| [—~
= chib 4 e
0911
YJOMN
AMONEIN LoneInuULSy
7 801~
e | |y3modNnoD
HOSSIO0Ud YOLOTN AV1dSIa
001~ 9Ll
A
AV1dSIa
gzL1-

30IA3d LNdNI

i

AN

0oLt

US 9,342,479 B2

1
SYSTEMS AND METHODS OF DATA
EXTRACTION IN A VECTOR PROCESSOR

1. FIELD

The present disclosure is generally related to data extrac-
tion in a vector processor.

II. DESCRIPTION OF RELATED ART

Advances in technology have resulted in smaller and more
powerful computing devices. For example, there currently
exist a variety of portable personal computing devices,
including wireless computing devices, such as portable wire-
less telephones, personal digital assistants (PDAs), and pag-
ing devices that are small, lightweight, and easily carried by
users. More specifically, portable wireless telephones, such
as cellular telephones and internet protocol (IP) telephones,
can communicate voice and data packets over wireless net-
works. Also, such wireless telephones can process executable
instructions, including software applications, such as a web
browser application, that can be used to access the Internet.
As such, these wireless telephones can include significant
computing capabilities.

Some devices, such as wireless telephones, may include a
vector processor. Vector processors may be efficient at han-
dling groups of data elements as a unit in data operations. For
example, an N-element vector processor may perform
memory load and store operations by moving N elements at
once between a source register and a memory, or the vector
processor may perform N mathematical operations (e.g.,
addition, multiplication) on N elements as one operation.
Assuming a single data element is a word of size 32 bits, the
source register of the vector processor may be a size of N
words.

In a memory system, words may be referred to by their
addresses. For example, word a(j) is stored at address j, word
a(j+1) is stored at address j+1, and so on. Memory systems
that include vector processors may be designed as aligned
memory such that groups of N words [a(j+N-1), . .., a(j+1),
a(j)] are stored starting at address j, such that the property j
modulo N=0 is satisfied. This is referred to as an aligned
vector memory access. 1o illustrate, in a 4-word vector pro-
cessor, load and store operations may only be valid when
addressing [a(3), a(2), a(1), a(0)] or [a(7), a(6), a(5), a(4)].

When implementing an operation in a vector processor, the
above described aligned memory structure may need to be
reflected in the operation (i.e., the operation may need to
conform to the fixed memory structure). However, many
operations are not regular and may not conform well to a fixed
memory of size N, resulting in inefficient implementations.
For example, many operations used in orthogonal frequency
division multiplexing (OFDM) systems operate on data ele-
ments that are non-contiguous. In OFDM systems, the trans-
mission spectrum is divided into sub-carriers. In order to
make use of frequency diversity, at a particular point in time
only a subset of the sub-carriers is assigned to a transmission.
The selected sub-carriers are in general non-contiguous, and
as a result, processing takes place on non-contiguous data
elements. For example, if the sub-carriers are stored in a
linear array A with index i (i.e., A(i)), in order to obtain
estimates of a channel, pilot processing may be applied to a
set of data elements consisting of every third sub-carrier (e.g.,
A(1), A(i+3), A(i+6), . . .). As another example, an OFDM
operation may require the extraction of a contiguous group of
12 or 6 samples from an arbitrary starting index.

10

25

35

40

45

2

Accordingly, it would be desirable to enhance the effi-
ciency of implementing operations that are not regular on an
N-word vector processor.

1II. SUMMARY

Data extraction in a vector processor may use a permuta-
tion network to reorder data elements such that the reordered
data elements may be stored to a memory as part of a single
operation. The data elements may be copied to a source reg-
ister and reordered based on a control register, where the
control register may contain indexes corresponding to loca-
tions of selected data elements in the source register. The
control register may be used to select data elements in any
order. Alternatively, the data elements may be selected using
a bit-mask, where each bit in the bit-mask indicates whether
a corresponding data element in the source register is to be
copied to the memory. The bit-mask may be used for in-order
data extraction. The selected data elements may be copied
from multiple registers and spliced together. The selected
data elements may be copied to the memory based on an
unaligned store pointer. The unaligned store pointer may
indicate a predicated store operation, where a first set of the
selected data elements may be copied to a first line in the
memory and a second set of the selected data elements may be
copied to a next line in the memory based on the unaligned
store pointer.

In a particular embodiment, a method of data extraction in
avector processor includes copying at least one data element
to a source register of a permutation network. The method
also includes reordering multiple data elements of the source
register, populating a destination register of the permutation
network with the reordered data elements, and copying the
reordered data elements from the destination register to a
memory. The resulting data elements may be in any arbitrary
order.

In another particular embodiment, a method of data extrac-
tion in a vector processor with aligned memory includes
copying at least one data element to a source register of a
permutation network. The method also includes using a bit-
mask to determine whether to select one or more data ele-
ments from the source register and, in response to determin-
ing to select the one or more data elements, populating a
destination register of the permutation network with the
selected one or more in-order data elements. The method
further includes copying the selected one or more data ele-
ments from the destination register to a memory according to
an unaligned store pointer that indicates a predicated store
operation.

In another particular embodiment, a method of data extrac-
tion in a vector processor includes copying at least one data
element from two or more first registers to a register to be used
as an input of a permutation network, where copying the at
least one data element is based on a first control register that
indicates, for each location of the register, which of the two or
more first registers is to be used to populate the location of the
register. The method also includes selecting data elements of
the register using a second control register, where the second
control register indicates indexes of the register correspond-
ing to locations of the data elements in the register, and
populating a destination register of the permutation network
with the selected data elements. The method further includes
copying the selected data elements from the destination reg-
ister to a memory.

In another particular embodiment, a computer-readable
medium stores instructions that, when executed by a proces-
sor, cause the processor to copy at least one data element to a

US 9,342,479 B2

3

source register of a permutation network. The instructions,
when executed by the processor, also cause the processor to
reorder multiple data elements of the source register and to
populate a destination register of the permutation network
with the reordered data elements. The instructions, when
executed by the processor, further cause the processor to copy
the reordered data elements from the destination register to a
memory.

In another particular embodiment, an apparatus includes a
source register configured to receive at least one data element,
a destination register, and a permutation network. The per-
mutation network is configured to reorder multiple data ele-
ments of the source register and to populate the destination
register with the reordered data elements.

One particular advantage provided by at least one of the
disclosed embodiments is enabling data extraction of non-
contiguous data elements, for example based on an OFDM
data extraction pattern, in a single operation on an N-word
vector processor.

Other aspects, advantages, and features of the present dis-
closure will become apparent after review of the entire appli-
cation, including the following sections: Brief Description of
the Drawings, Detailed Description, and the Claims.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a particular illustrative embodiment
of a vector processor, a permutation network, and a control
register;

FIG. 2 is a block diagram of a particular illustrative
embodiment of the vector processor of FIG. 1 and a bit-mask
at a first stage of data extraction;

FIG. 3 is a block diagram of a particular illustrative
embodiment of the vector processor of FIG. 1 and the bit-
mask of FIG. 2 at a second stage of data extraction;

FIG. 4 is a block diagram of a particular illustrative
embodiment of the vector processor of FIG. 1 and the bit-
mask of FIG. 2 at a third stage of data extraction;

FIG. 5 is a block diagram of a particular illustrative
embodiment of in-order extraction of data;

FIG. 6 is a block diagram of a particular illustrative
embodiment of the in-order extraction of FIG. 5§ with vector
splicing using a plurality of bit-masks;

FIG. 7 is a block diagram of a particular illustrative
embodiment of the in-order extraction of FIG. 5§ with vector
splicing using a second control register;

FIG. 8 is a flow chart of a particular illustrative embodi-
ment of a method of data extraction in a vector processor;

FIG. 9 is a flow chart of a second illustrative embodiment
of'a method of data extraction in a vector processor;

FIG. 10 is a flow chart of a third illustrative embodiment of
a method of data extraction in a vector processor; and

FIG. 11 is a block diagram of a wireless device including a
vector processor with a permutation network such as the
permutation network of FIG. 1.

V. DETAILED DESCRIPTION

FIG. 1 is a block diagram of a particular illustrative
embodiment of a vector processor 100. The vector processor
100 may include a permutation network 108 that receives data
from one or more source registers (e.g., an illustrative source
register 104) and that outputs data to one or more destination
registers (e.g., an illustrative destination register 110). One or
more control registers (e.g., an illustrative control register
106) may control the operation of the permutation network
108. For example, the permutation network 108 may store

25

35

40

45

50

55

4

data from the source register 104 in the destination register
110 in areordered fashion, where a specific reordering pattern
applied by the permutation network 108 is defined by the
control register 106.

In a particular embodiment, the source register 104 may
receive data from a data source, such as a memory (e.g.,
random access memory (RAM)) or a register. For example, in
FIG. 1, the source register 104 of the permutation network
108 receives data from a first register 102. Similarly, although
not shown in FIG. 1, the destination register 110 may output
data to a destination, such as a memory (e.g., RAM) or a
register (e.g., the first register 102 or another register of the
vector processor 100). Data elements may be stored into and
copied from the first register 102 on a per-byte, per half-word,
per word, and/or per double-word basis.

The permutation network 108 is operable to reorder any
data element (e.g., byte, half-word, word, or double-word) of
the source register 104 into a different data element of the
destination register 110. In a particular embodiment, the per-
mutation network 108 includes various multiplexers, where
control signals to the multiplexers enable such reordering.
For example, each multiplexer may be configurable, via a
control signal, to copy data from a particular location of the
source register 104 to a different location of the destination
register 110. In a particular embodiment, the control signals
for the multiplexers of the permutation network 108 are gen-
erated based on data in the control register 106.

During operation, at least one data element from the first
register 102 may be copied to the source register 104. For
example, as shown in FIG. 1, the 32 data elements “a, b,
c,...ae, af,” each having a size of one word, may be copied
from the first register 102 to the source register 104. In a
particular embodiment, one word may occupy four bytes. In
other embodiments, word size may vary based on design or
architecture of the vector processor 100. A reordering pattern
may be loaded into the control register 106. In a particular
embodiment, the reordering pattern may be programmed via
user input or retrieved from a table. For example, in FIG. 1,
the control register 106 stores a first value 112 of “4” and a
second value 114 of “11” in the two least significant bytes of
the control register 106 located at indexes 0 and 1 of the
control register 106.

A position of a particular index value in the control register
106 may indicate a position (e.g., index) of the corresponding
data element in the destination register 110. For example, as
shown in FIG. 1, the permutation network 108 reorders the
data element “e” from index 4 of the source register 104 to
index 0 of the destination register 110. Similarly, the permu-
tation network 108 reorders data “1” from index 11 of the
source register 104 to index 1 of the destination register 110,
as shown.

The vector processor 100 may thus be operable to perform
reordering of data elements using the permutation network
108. In particular, the vector processor 100 may support reor-
dering in accordance with complex arbitrary patterns. For
example, when the control register 106 stores indexes “0, 3,
6, ..., the permutation network 108 may perform in-order
extraction of every third data element from the source register
104. Such a reordering pattern may be useful when the vector
processor 100 is included in a wireless communication device
or component thereof, such as a fourth generation (4G) long
term evolution (LTE) modem. For example, such a reordering
pattern may be used to extract pilot tones according to an LTE
pilot extraction pattern.

However, when performing in-order extraction, the degree
of arbitrariness afforded by the control register 106 may not
be necessary. To enable faster processing, in an alternate

US 9,342,479 B2

5

embodiment, a bit-mask may be used to define a fixed extrac-
tion pattern instead of using a control register to define an
arbitrary reordering pattern. For example, FIGS. 2-4 illustrate
operation at the vector processor 100 of FIG. 1 based on a
bit-mask 206 and an offset 208. FIG. 2 illustrates a first stage
of such operation and is generally designated 200.

During operation, data stored in the first register 102 may
be processed in order. For example, the data block designated
“0” may be processed first, as shown in FIG. 2. The data block
designated “0” may include data elements “a, b, c . . . ae, af.”

The bit-mask 206 and the offset 208 may be programmed
via user input or retrieved from memory (e.g., from a table
stored in memory). In a particular embodiment, the bit-mask
206 and the offset 208 are stored in registers or a register pair
of the vector processor. The bit-mask 206 may be used to
determine whether to select data elements in the source reg-
ister 104. When all bits in the bit-mask 206 have a first value
(e.g., “0”), it may be determined that none of the data ele-
ments in the source register 104 are to be selected. In the
embodiment illustrated in FIG. 2, the bit-mask 206 has a
hexadecimal value of OxFFOOOFFF, which is equal to a binary
value of “1111 1111 0000 00000000 1111 1111 1111.” Each
particular bit in the bit-mask 206 may correspond to a par-
ticular location of the source register 104. For each bit in the
bit-mask 206, a data element at the corresponding location in
the source register 104 may be selected when the bit has a
second value.

For example, as shown in FIG. 2, data in each index of the
source register 102 corresponding to a “1” in the bit-mask 206
may be selected by the permutation network 108, but data in
each index of the source register 104 corresponding to a “0”
in the bit-mask 206 may not be selected. Thus, as shown in
FIG. 2, the permutation network 108 may populate the des-
tination register 110 with the twelve right-most data elements
and the eight left-most data elements from the source register
102.

In a particular embodiment, the permutation network 108
may output extracted data elements to the destination register
110 based on an offset pointer 218 that depends on the value
of the offset 208. To illustrate, the offset 208 may store the
value 0, which may result in the offset pointer 218 pointing to
index zero of the destination register 110, as shown.

In a particular embodiment, data from the destination reg-
ister 110 may be copied to a memory 112 by performing an
aligned store operation. The aligned store operation may be
performed based on a store pointer 214. For example, as
shown in FIG. 2, the twenty data elements “a, b, c, ... 1,y Z,
aa, ... ae, af” may be copied to the memory 112 at a position
indicated by the store pointer 214.

FIG. 3 is a diagram of a second stage of operation at a
vector processor that follows the first stage of operation illus-
trated in FIG. 2, and is generally designated 300.

After the twenty data elements “a, b,c,...1,y,7,aa, ... ae,
af” are copied to the memory 112, data block “1” of the first
register 102 may be processed. The store pointer 214 may be
updated to point to the position in memory immediately to the
left of the data element “af” (i.e., byte position 80). As aresult,
the offset 208 may be equal to 80 (i.e., the seven least signifi-
cant bits of the updated store pointer 214). As shown in FIG.
3, the bit-mask 206 may be updated to OxOFFFOOOF.

During operation, the data block designated “1” in the first
register 102 may be processed next, as shown in FIG. 3. The
data block designated “1” may include data elements “ag, ah,
ai, ... bk, bl.”” The binary value of the bit-mask 206 is equal to
“0000 1111 1111 1111 0000 0000 0000 1111 Thus, the
permutation network 108 may populate the destination reg-
ister 110 with data elements “ag . . . aj” and “aw . . . bh.”

10

15

20

25

30

40

45

50

55

60

65

6

In a particular embodiment, the permutation network 108
may fill the destination register 110 with the data elements
based on the offset pointer 218. The offset pointer 218 may
indicate an offset position in the destination register 110. To
illustrate, the offset 208 may be 80 (i.e., word position 20)
indicating an offset position at index twenty of the destination
register 110, as shown. As illustrated in FIG. 3, the destination
register 110 may be filled with data elements starting at index
twenty. In case of an overflow, any remaining data elements
may be stored in the destination register 110 below index
twenty. Thus, the data elements “be . . . bh™ may be populated
in word positions 0-3 of the destination register 110.

In a particular embodiment, data from the destination reg-
ister 110 may be copied to the memory 112 by performing a
predicated store operation that enables or inhibits stores on a
per-data element (e.g., per word) basis. The predicated store
operation may be performed based on the store pointer 214.
The store pointer 214 is unaligned and may indicate the offset
208 to mask a partial store of the data elements. The data
elements stored in the destination register 110 at positions
equal to or higher than the offset position indicated by the
offset pointer 218 (i.e., the data elements “ag . . . aj” and
“aw ... bd” may be copied to locations equal to or higher than
the location indicated by the store pointer 214. The data
elements stored in the destination register at positions lower
than the offset position indicated by the offset pointer 218
(i.e., the data elements “be . . . bh”) may be copied to the
memory 112 at locations lower than indicated by a next line
store pointer 316. In a particular embodiment, the next line
store pointer 316 may be generated by adding a line size (e.g.,
128 bytes, in FIG. 3) to the store pointer 214.

FIG. 4 is a diagram of a third stage of operation at a vector
processor that follows the second stage of operation illus-
trated in FIG. 3, and is generally designated 400.

After the sixteen data elements “ag . . . aj, aw . . . az,
ba...bh” are copied to the memory 112, data block “2”” of the
first register 102 may be processed. The store pointer 214 may
be updated to point to the position in memory immediately to
the left of the data element “bh” (i.e., byte position 144, which
is binary O . . . 010010000). The least significant bits of the
store pointer 214 may indicate an offset into a row of the
memory 112. For example, when there are 128 byte positions,
in each row of the memory 112, 7 bits (i.e., 27=128) may
indicate a byte offset into a row. The remaining bits of the
store pointer 214 may indicate the row. For example, in the
updated store pointer 214, the seven least significant bits (i.e.,
binary 0010000) indicate an offset of 16 bytes and the remain-
ing bits (i.e., 0. .. 01) indicate row 1 of the memory 112. As
shown in FIG. 4, the bit-mask 206 may be updated to
0x000FFF00.

During operation, the data block designated “2” in the first
register 102 may be processed, as shown in FIG. 4. The data
block designated “2” may include data elements “bm, bn,
bo, . .. cq, cr”” The binary value of the bit-mask 206 is equal
to “0000 0000 0000 1111 1111 1111 0000 0000.” Thus, the
permutation network 108 may populate the destination reg-
ister 110 with data elements “bu . . . cf”

Data from the destination register 110 may then be copied
to the memory 112. The data elements stored in the destina-
tion register 110 at positions equal to or higher than the offset
position indicated by the offset pointer 218 (i.e., the data
elements “bu . . . cf”) may be copied to the memory 112
starting at the location indicated by the store pointer 214. The
data elements stored in the destination register 110 at posi-
tions lower than the offset position indicated by the offset
pointer 218 may be “rotated,” i.e., copied to the memory 112
at locations lower than indicated by the next line store pointer
316. In case there is no overflow, the data elements copied to

US 9,342,479 B2

7

the next line may be overwritten during a subsequent write to
the memory 112. The store operation to the next line may thus
be considered a “speculative” store operation. Thus, explicit
detection of an overflow may not be required, which may
simplify logic and hardware used to support the described
store operation.

The permutation network 108 may thus be operable to
perform in-order extraction of data based on the bit-mask
206, as illustrated in FIGS. 2-4, instead of using the control
register 106 of FIG. 1. In particular, the bit-mask 206 may
provide a more compact form of expression than the control
register 106. The control register 106 may be operable to
create any output pattern such as changing the order of the
data elements and repeating the data elements. However, in
the context of orthogonal frequency-division multiplexing
(OFDM), most operations may perform in-order data extrac-
tion and the extracted data elements may not need to be
repeated. For example, using a bit-mask may improve the
efficiency of extracting pilot tones according to an in-order
LTE pilot extraction pattern.

In a particular embodiment, the permutation network 108
may be used for data extraction from multiple registers based
on a regular pattern (e.g., when the number of input data
elements, output data elements, and the extraction pattern are
known in advance). For example, FIGS. 5-6 are diagrams of
operation at the vector processor 100 of FIG. 1 where data
elements are extracted from multiple registers based on bit-
masks 508, 510, and 512 using intermediate registers 602,
604, 606, and 608. As another example, FIG. 7 is a diagram of
operation at the vector processor 100 of FIG. 1 where data
elements are extracted from multiple registers based on con-
trol registers 702 and 106 using an intermediate register 704.

FIG. 5 illustrates an operation where data elements are
extracted from multiple registers based on bit-masks and
offsets, and is generally designated 500. During operation,
data elements may initially be stored in multiple source reg-
isters. In the embodiment illustrated in FIG. 5, ninety-six data
elements (e.g., samples) are stored in three source registers:
source register 0 502, source register 1 504, and source reg-
ister 2 506.

A bit-mask may indicate which portions of data elements
are to be extracted from a corresponding source register, as
explained above and as illustrated in FIGS. 2-4. The bit-mask
may indicate that the data elements are to be extracted accord-
ing to a regular pattern. As shown in FIG. 5, in the bit-mask
508, every third bit starting from bit 0 (i.e., bits 0,3, 6,9, . . .
30) is set to 1 and the remaining bits are set to 0. That is, the
bit-mask 508 indicates that every third data element starting
from the data element at index O (i.e., data elements “A,
B, ... K”) of source register 0 502 is to be copied to the
destination register 110. In the bit-mask 510, every third bit
starting from bit 1 is set to 1 and the remaining bits are set to
0. Thus, the bit-mask 510 indicates that every third data
element starting from the data element atindex 1 (i.e., the data
elements “L, M, ... V") of source register 1 504 is to be copied
to the destination register 110. In the bit-mask 512, every third
bit starting from bit 2 is set to 1 and the remaining bits are set
to 0. Thus, the bit-mask 512 indicates that every third data
element starting from the data element at index 2 (i.e., the data
elements “W, X, ... Z, AA, ... AF”) of source register 2 506
is to be copied to the destination register 110. In a particular
embodiment, the illustrated bit-masks 508, 510, and 512 may
be used to extract every third element of a received sequence
of OFDM 4G LTE symbols to perform in-order pilot symbol
extraction.

A permutation network (e.g., the permutation network 108
of FIG. 1) may populate the destination register 110 based on

20

25

35

40

45

65

8

the bit-masks 508, 510, and 512, as shown. It will be noted
that because the number of output samples (32) fills exactly
one output register, the output samples may be written with-
out the use of predicated stores. Such fixed extraction pattern-
based processing may be executed in fewer processor cycles
than when an arbitrary extraction pattern is used (e.g., as
described with reference to FIG. 1). In a particular embodi-
ment, the permutation network 108 may perform one or more
splice operations to populate the destination register 110. For
example, FIG. 6 illustrates an example of splice operations
associated with the data extraction illustrated in FIG. 5 and is
generally designated 600.

During operation, data elements may be copied from each
of'the source registers to a corresponding intermediate regis-
ter. For example, the data elements “A . . . K™ are copied to the
intermediate register 602, the data elements “L. . . . V” are
copied to the intermediate register 604, and the data elements
“W...Z,AA ... AF” are copied to the intermediate register
606. The data elements “L. . . . V" are copied to a portion of the
intermediate register 604 that does not overlap with a portion
of the intermediate 602 to which data elements “A ... K” are
copied. The data elements “W ... Z, AA ... AF” are copied
to a portion of the intermediate register 606 that does not
overlap with the portions of the intermediate registers 602 and
604, respectively. In a particular embodiment, the intermedi-
ate registers 602, 604, or 606 may also be a destination reg-
ister for a permutation network. The permutation network
may copy the data elements from the source register to the
intermediate register based on a bit-mask and an offset as
explained above and as illustrated in FIGS. 2-4, where the
offset is used so that data elements are copied to non-over-
lapping positions.

The non-overlapping data elements in the intermediate
register 602 and in the intermediate register 604 may be
spliced into the intermediate register 608, which may be
usable as a source register for a permutation network. The
permutation network may splice contiguous non-overlapping
data elements from multiple intermediate registers into
another intermediate register by copying the data elements
from each of the intermediate registers into the other inter-
mediate register using a bit-mask and an offset, as explained
above and as illustrated in FIGS. 2-4. The non-overlapping
data elements from the intermediate registers 606 and 608
may be spliced into the destination register 110 to complete
the in-order extraction.

In some implementations, fewer intermediate registers
may be used for splicing. For example, the non-overlapping
data elements in the intermediate register 602 and in the
intermediate register 604 may be spliced into the intermediate
register 602 or into the intermediate register 604 instead of
being spliced into the intermediate register 608. Alternatively,
in an embodiment where the permutation network supports
simultaneous application of multiple bit-masks to multiple
source registers, the permutation network may populate the
destination register 110 as shown in a single splice operation
(e.g., a multi-register splice or “super splice” operation). For
example, FIG. 7 illustrates an operation in which data ele-
ments are extracted and spliced together from multiple reg-
isters and is generally designated 700. A single splice opera-
tion may include selecting the non-overlapping data elements
and using the permutation network to populate the destination
register 110 in a single instruction.

During operation, data stored in two or more registers may
be spliced based on a control register. For example, data
elements stored in source register 0502, source register 1 504,
and source register 2 506 may be spliced based on the control
register 702 to populate the destination register 110 with the

US 9,342,479 B2

9

same data elements in the same order as illustrated in FIGS.
5-6. A value stored in the control register 702 may indicate
which of the source registers 502, 504, or 506 is to be used to
populate alocation in a destination register (e.g., the interme-
diate register 704). An index of the value in the control reg-
ister may indicate an index of the register that the data element
is to be copied from as well as an index of the destination
register. In the embodiment illustrated in FIG. 7, the control
register 702 has a value 0 at index 3. The value O may indicate
that the data element is to be copied from the source register
0 502. The index 3 may indicate that the data element to be
copied is at index 3 of the source register 0 502 and is to be
copied to index 3 of the intermediate register 704. Thus, the
data element “B” is copied to index 3 of the intermediate
register 704, as shown.

In a particular embodiment, after the data elements are
copied to the intermediate register 704, another control reg-
ister may be used to reorder the data elements. For example,
as shown in FIG. 7, the control register 106 may be used to
select the data elements in intermediate register 704 and to
populate the destination register 110 with reordered data ele-
ments. The permutation network 108 may select data ele-
ments from the intermediate register 704 using the control
register 106, as explained above and as illustrated in FIG. 1. In
the embodiment illustrated in FIG. 7, the control register 106
has avalue 3 atindex 1. The value 3 may indicate that the data
element at index 3 of the intermediate register 704 is to be
copied. The index 1 may indicate that the data element may be
copied to index 1 of the destination register 110. Thus, the
data element “B” may be copied to index 1 of the destination
register 110, as shown.

As shown in FIGS. 5-7, the vector processor 100 may
generally be operable to deliver desired output samples to be
extracted in a single instruction based on a specified extrac-
tion pattern. For example, such an instruction may be used to
extract pilot tones according to a 4G LTE pilot extraction
pattern.

FIG. 8 is a flow chart of a particular illustrative embodi-
ment of a method 800 of data extraction in a vector processor.
In an illustrative embodiment, the method 800 may be per-
formed by the vector processor 100 of FIG. 1.

The method 800 may include copying at least one data
element from a first register of a vector processor to a source
register of a permutation network, at 802. For example, in
FIG. 1, the data elements “a, b, c, . . . ad, ae, af” may be copied
from the first register 102 to the source register 104 of the
permutation network 108.

The method 800 may also include reordering multiple data
elements of the source register, at 804, and populating a
destination register of the permutation network with the reor-
dered data elements, at 806. For example, in FIG. 1, the data
elements “e” and “1” may be reordered from indexes 4 and 11
of'the source register 104 into indexes 0 and 1 of the destina-
tion register 110, respectively.

FIG. 9 is a flow chart of a second illustrative embodiment
of'a method 900 of data extraction in a vector processor. In an
illustrative embodiment, the method 900 may be performed
by the vector processor 100 of FIG. 1 and may be illustrated
with reference to FIGS. 2-4.

The method 900 may include copying at least one data
element from a first register to a source register of a permu-
tation network, at 902. For example, in FIG. 3, the data
elements “ag, ah, ai, . . . bk, bl” may be copied from the first
register 102 to the source register 104 of the permutation
network 108.

The method 900 may also include using a bit-mask to
determine whether to select one or more data elements from

10

15

20

25

30

35

40

45

50

55

60

65

10

the source register, at 904, and, in response to determining to
select the one or more data elments, populating a destination
register of the permutation network with the selected data
elements, at 906. For example, in FIG. 3, the bit-mask 206
may be used to determine whether to select one or more data
elements from the source register 104, and the selected data
elements “ag, . .. aj, aw, . .. az, ba, . . . bh” may be copied to
the destination register 110.

The method 900 may further include copying the selected
data elements from the destination register to a memory
according to an unaligned store pointer that indicates a predi-
cated store operation, at 908. For example, in FIG. 3, the data
elements “ag . ..aj,aw...az ba...bd” may be copied from
the destination register 110 to a first line in the memory 112
based on the store pointer 214 and the data elements “be . . .
bh” may be copied from the destination register 110 to a next
line in the memory 112 based on the next line store pointer
316.

FIG. 10 is a flow chart of a particular illustrative embodi-
ment of a method 1000 of data extraction in a vector proces-
sor. In an illustrative embodiment, the method 1000 may be
performed by the vector processor 100 of FIG. 1.

The method 1000 may include copying at least one data
element from two or more first registers to a register to be used
as an input of a permutation network, where copying the at
least one data element is based on a first control register that
indicates, for each location of the register, which of the two or
more first registers is to be used to populate the location of the
register, at 1002. For example, in FIG. 7, the data element “B”
may be copied from the source register 0 502 to index 3 of'the
intermediate register 704 based on the value “0” at index 3 of
the control register 702. The intermediate register 704 may be
used as input of the permutation network 108.

The method 1000 may also include selecting data elements
from the register using a second control register, where the
second control register indicates indexes of the register cor-
responding to locations of the data elements in the register, at
1004, and populating a destination register of the permutation
network with the selected data elements, at 1006. For
example, in FIG. 1, the control register 106 contains the value
“3” at index 1. Thus, the data element “B” at index 3 of the
intermediate register 704 is copied to index 1 of the destina-
tion register 110.

The method 1000 may further include copying the selected
data elements from the destination register to a memory, at
1008. For example, in FIG. 1, the data element “B” is copied
from the destination register 110 to the memory 112.

Referring to FIG. 11, a block diagram of a particular illus-
trative embodiment of an electronic device including the vec-
tor processor 100 with the permutation network 108 is
depicted and generally designated 1100. The vector processor
100 is coupled to a memory 112 and includes registers 1112.
In an illustrative embodiment, the registers 1112 include the
first register 102 of FIGS. 1-4, the source register 104 of
FIGS. 1-4, the control register 106 of FIGS. 1 and 7, the
destination register 110 of FIGS. 1-7, the bit-mask 206 of
FIGS. 2-4, the offset 208 of FIGS. 2-4, the offset pointer 218
of FIGS. 2-4, the store pointer 214 of FIGS. 2-4, the next line
store pointer 316 of FIGS. 3-4, the source register 0 502 of
FIGS. 5 and 7, the source register 1 504 of FIGS. 5 and 7, the
source register 2506 of FIGS. 5 and 7, the bit-masks 508, 510,
and 512 of FIG. 5, the intermediate registers 602, 604, 606,
and 608 of FIG. 6, the control register 702 of FIG. 7, the
intermediate register 704 of FIG. 7, or any combination
thereof.

FIG. 11 also shows a display controller 1126 that is coupled
to the vector processor 100 and to a display 1128. A coder/

US 9,342,479 B2

11

decoder (CODEC) 1134 can also be coupled to the vector
processor 100. A speaker 1136 and a microphone 1138 can be
coupled to the CODEC 1134.

FIG. 11 also indicates that a wireless controller 1140 canbe
coupled to the vector processor 100 and, via a transceiver
1150 (e.g., a 4G LTE modem), to a wireless antenna 1142. In
a particular embodiment, the vector processor 100, the dis-
play controller 1126, the memory 112, the CODEC 1134, and
the wireless controller 1140 are included in a system-in-
package or system-on-chip device 1122. In a particular
embodiment, an input device 1130 and a power supply 1144
are coupled to the system-on-chip device 1122. Moreover, in
aparticular embodiment, as illustrated in FIG. 11, the display
1128, the input device 1130, the speaker 1136, the micro-
phone 1138, the wireless antenna 1142, and the power supply
1144 are external to the system-on-chip device 1122. How-
ever, each of the display 1128, the input device 1130, the
speaker 1136, the microphone 1138, the wireless antenna
1142, and the power supply 1144 can be coupled to a com-
ponent of the system-on-chip device 1122, such as an inter-
face or a controller.

In an illustrative embodiment, the vector processor 100
and/or components thereof may be operable to perform all or
a portion of the operations and methods described with ref-
erence to FIGS. 1-10. The memory 112 may store instructions
1160 that are executable (e.g., by the vector processor 100) to
perform all or a portion of the operations and methods
described with reference to FIGS. 1-10. For example, the
antenna 1142 may receive a sequence of 01-DM 4G LTE
symbols and the received symbols may be stored as data
elements in a first register of the registers 1112. Portions of
the stored data elements, for example corresponding to pilot
tones, may be selected and reordered by the permutation
network 108 based on a control register, a bit-mask, or any
combination thereof. The reordered data elements may be
stored to the memory 112.

In conjunction with the described embodiment, an appara-
tus is disclosed that includes means for copying at least one
data element to a source register of a permutation network.
For example, the means for copying may include the vector
processor 100 of FIGS. 1 and 11 or component(s) thereof, one
or more other devices or circuits configured to copy at least
one data element to a register, or any combination thereof.

The apparatus includes means for reordering multiple data
elements of the source register. For example, the means for
reordering may include the permutation network 108 of
FIGS. 1-4, 7, and 11 or component(s) thereof, one or more
other devices or circuits configured to reorder multiple data
elements of a register, or any combination thereof.

The apparatus includes means for populating a destination
register of the permutation network with the reordered data
elements. For example, the means for populating the destina-
tion register may include the permutation network 108 of
FIGS. 1-4, 7, and 11 or component(s) thereof, one or more
other devices or circuits configured to populate a register, or
any combination thereof.

The apparatus also includes means for copying the reor-
dered data elements from the destination register to a
memory. For example, the means for copying the reordered
elements may include the vector processor 100 of FIGS. 1-4,
7, and 11 or component(s) thereof, one or more other devices
or circuits configured to copy data elements to a memory, or
any combination thereof.

The apparatus may also include means for storing a reor-
dering pattern. For example, the means for storing the reor-
dering pattern may include the control register 106 of FIGS.
1 and 6, the bit-mask 206 of FIGS. 2-4, the bit-masks 508,

30

35

40

45

12

510, and 512 of FIG. 5, the control register 702 of FIG. 7, the
registers 1112 of FIG. 11, or component(s) thereof, one or
more other devices or circuits configured to store a reordering
pattern, or any combination thereof.

Those of skill would further appreciate that the various
illustrative logical blocks, configurations, modules, circuits,
and algorithm steps described in connection with the embodi-
ments disclosed herein may be implemented as electronic
hardware, computer software, or combinations of both. Vari-
ous illustrative components, blocks, configurations, modules,
circuits, and steps have been described above generally in
terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the par-
ticular application and design constraints imposed on the
overall system. Skilled artisans may implement the described
functionality in varying ways for each particular application,
but such implementation decisions should not be interpreted
as causing a departure from the scope of the present disclo-
sure.

The steps of a method or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in random access memory (RAM), flash memory,
read-only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), registers, hard disk, a remov-
able disk, a compact disc read-only memory (CD-ROM), or
any other form of non-transitory storage medium. An exem-
plary storage medium is coupled to the processor such that the
processor can read information from, and write information
to, the storage medium. In the alternative, the storage medium
may be integral to the processor. The processor and the stor-
age medium may reside in an application-specific integrated
circuit (ASIC). The ASIC may reside in a computing device
or a user terminal (e.g., a mobile phone or a PDA). In the
alternative, the processor and the storage medium may reside
as discrete components in a computing device or user termi-
nal. For example, one or more processors (or components
thereof) configured to perform functionality described herein
may be integrated into a set top box, an entertainment unit, a
navigation device, a communications device, a personal digi-
tal assistant (PDA), a fixed location data unit, a mobile loca-
tion data unit, a mobile phone, a cellular phone, a computer,
a portable computer, a desktop computer, a monitor, a com-
puter monitor, a television, a tuner, a radio, a satellite radio, a
music player, a digital music player, a portable music player,
a video player, a digital video player, a digital video disc
(DVD) player, a portable digital video player, a tablet com-
puting device, or any combination thereof.

The previous description of the disclosed embodiments is
provided to enable a person skilled in the art to make or use
the disclosed embodiments. Various modifications to these
embodiments will be readily apparent to those skilled in the
art, and the principles defined herein may be applied to other
embodiments without departing from the scope of the disclo-
sure. Thus, the present disclosure is not intended to be limited
to the embodiments disclosed herein but is to be accorded the
widest scope possible consistent with the principles and novel
features as defined by the following claims.

What is claimed is:
1. A method of data extraction in a vector processor, the
method comprising:
copying at least one data element to a source register of a
permutation network;

US 9,342,479 B2

13

reordering multiple data elements of the source register
based on values stored in a control register, wherein each
of the values indicates bit position of one of the data
elements in the source register;

populating a destination register of the permutation net-

work with the reordered data elements; and

copying the reordered data elements from the destination

register to a memory.
2. The method of claim 1, wherein each of the data ele-
ments corresponds to a byte, a half-word, a word, or a double-
word of data.
3. The method of claim 1, wherein the vector processor is
included in a transceiver comprising a fourth generation (4G)
long term evolution (LTE) modem.
4. The method of claim 1, wherein the permutation network
comprises a plurality of multiplexers, and wherein each mul-
tiplexer is configurable to copy data from a location of the
source register to a different location in the destination reg-
ister.
5. The method of claim 1, wherein execution of a single
instruction includes copying the at least one data element to
the source register, reordering the multiple data elements of
the source register, populating the destination register with
the reordered data elements, and copying the reordered data
elements from the destination register to the memory, and
wherein copying the at least one data element to the source
register includes splicing contiguous non-overlapping por-
tions of data elements from two or more registers into the
source register.
6. The method of claim 5, wherein the data elements from
the two or more registers are selected according to a regular
pattern.
7. The method of claim 1, wherein a control register indi-
cates, for each location of the destination register, which of
the reordered data elements is to be used to populate the
location of the destination register.
8. The method of claim 1, further comprising storing the
reordered data elements in the memory by performing an
aligned store.
9. A method of data extraction in a vector processor with
aligned memory, the method comprising:
using a bit-mask to determine whether to copy a data ele-
ment, from a source register of a permutation network to
a destination register of the permutation network; and

in response to determining to copy the data element to the
destination register, copying the data element from the
destination register to a memory according to an
unaligned store pointer that indicates a predicated store
operation.

10. The method of claim 9, wherein a particular bit in the
bit-mask corresponds to a particular location in the source
register, and wherein, for each bit in the bit-mask, a data
element at the corresponding location in the source register is
copied to the destination register when the bit has a first value.

11. The method of claim 9, wherein the unaligned store
pointer indicates an offset to mask a partial store of the copied
data element.

12. The method of claim 11, further comprising filling the
data element into the destination register at a position higher
than or equal to an offset position and filling another data
element into the destination register at a position lower than
the offset position, wherein an offset pointer indicates the
offset position of the destination register corresponding to the
offset.

10

15

20

25

30

35

40

45

50

60

65

14

13. The method of claim 12, wherein the predicated store
operation includes:
a first store operation that copies the data element located at
the positions higher than or equal to the offset position to
a first line of an aligned memory; and

a second store operation that copies the other data element
located at the position lower than the offset position to a
next line of the aligned memory.
14. The method of claim 9, further comprising:
using a second bit-mask to determine whether to copy one
or more second data elements from a second register;

in response to determining to copy the one or more second
data elements, populating the destination register of the
permutation network with the one or more second data
elements; and

copying the one or more second data elements from the

destination register to a memory.

15. The method of claim 14, wherein populating the des-
tination register with the data element and with the one or
more second data elements includes:

copying the data element from the source register to a first

intermediate register at a first portion of the first inter-
mediate register;

copying the one or more second data elements from the

second register to a second intermediate register at a
second portion of the second intermediate register,
wherein the first and second portions are non-overlap-
ping; and

splicing the first portion of the first intermediate register

and the second portion of the second intermediate reg-
ister into the destination register.

16. A method of data extraction in a vector processor, the
method comprising:

copying at least one data element from two or more first

registers to a register to be used as an input of a permu-
tation network, wherein copying the at least one data
element is based on a first control register that indicates,
for each location of the register, which of the two or more
first registers is to be used to populate the location of the
register;

selecting data elements of the register using a second con-

trol register, wherein the second control register indi-
cates indexes of the register corresponding to locations
of the data elements in the register;

populating a destination register of the permutation net-

work with the selected data elements; and

copying the selected data elements from the destination

register to a memory.

17. The method of claim 16, wherein a position of a par-
ticular index in the second control register indicates a position
of a corresponding data element in the destination register.

18. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the
processor to:

copy at least one data element to a source register of a

permutation network;

reorder multiple data elements of the source register based

on values stored in a control register, wherein each ofthe
values indicates bit position of one of the data elements
in the source register;

populate a destination register of the permutation network

with the reordered data elements; and

copy the reordered data elements from the destination reg-

ister to a memory.

19. The non-transitory computer-readable medium of
claim 18, wherein the at least one data element corresponds to

US 9,342,479 B2

15
a pilot tone, and wherein the reordering is based on a long
term evolution (LTE) pilot extraction pattern.
20. An apparatus comprising:
means for copying at least one data element to a source
register of a permutation network;
means for reordering multiple data elements of the source
register based on values stored in a control register,
wherein each of the values indicates bit position of one
of the data elements in the source register;
means for populating a destination register of the permu-
tation network with the reordered data elements; and
means for copying the reordered data elements from the
destination register to a memory.
21. The apparatus of claim 20, further comprising means
for storing a reordering pattern.
22. An apparatus comprising:
a source register configured to receive at least one data
element;
a control register;
a destination register; and
a permutation network configured to:
reorder multiple data elements of the source register
based on values stored in the control register, wherein
each of the values indicates bit position of one of the
data elements in the source register; and
populate the destination register with the reordered data
elements.

10

15

25

16

23. The apparatus of claim 22, further comprising a control
register, wherein the reordering is performed using the con-
trol register.
24. The apparatus of claim 22, wherein the permutation
network comprises a plurality of multiplexers, wherein each
multiplexer is configurable to copy data from a location of the
source register to a different location in the destination reg-
ister.
25. The apparatus of claim 24, wherein the permutation
network is integrated into a set top box, an entertainment unit,
a navigation device, a communications device, a personal
digital assistant (PDA), a fixed location data unit, a mobile
location data unit, a mobile phone, a cellular phone, a com-
puter, a portable computer, a desktop computer, a monitor, a
computer monitor, a television, a tuner, a radio, a satellite
radio, a music player, a digital music player, a portable music
player, a video player, a digital video player, a digital video
disc (DVD) player, a portable digital video player, a tablet
computing device, or any combination thereof.
26. The method of claim 1, further comprising:
determining an updated store pointer based on copying
other data elements to the memory, wherein the reor-
dered data elements are copied to memory locations of
the memory based on the updated store pointer; and

determining an offset pointer based on the updated store
pointer, wherein the reordered data elements are popu-
lated to positions in the destination register based on the
offset pointer.

